Arterial stiffness: clinical implications and its role in cardiovascular disease

연세대학교 심장혈관병원 심장내과 최 동 훈

Arterial stiffness

 Definition and pathophysiology of arterial stiffness

 Association of arterial stiffness with cardiovascular disease

Treatment of arterial stiffness

Arteriosclerosis is

= The hardening of the arteries

Aortic stiffness

Young adults

Older adults

Pathogenesis of arterial stiffness

Zieman SJ et al. Arterioscler Thromb Vasc Biol 2005;25:932-43

Young normal aorta

Old stiff aorta

Young normal aorta

Old stiff aorta

Pressure during systole is a major determinant of myocardial O2 requirement

Pressure during diastole is a major determinant of CBF

Index of arterial stiffness

Compliance

= $\Delta D / \Delta P$ (cm/mmHg) Absolute diamenter (or area) change for a pressure increment

Distensibility

= $\Delta D / \Delta P \cdot D_{\text{baseline}}$ (mmHg⁻¹) Relative diameter (or area) change for a pressure increment

- Young's Elastic Modulus
 = \Delta P•D/ \Delta DXh(mmHg/cm)
- Beta index(Stiffness index) = Ln(Ps/Pd)/ [(Ds-Dd)/Dd]

Pulse wave velocity(cfPWV, baPWV)
 = Distance / \(\Delta\)Time delay (cm/sec)
 Speed of travel of the pulse along an arterial segment

Local Stiffness

Relationship of aortic PWV (catheter method) and baPWV

Arterial stiffness

 Definition and pathophysiology of arterial stiffness

 Association of arterial stiffness with cardiovascular disease

Treatment of arterial stiffness

Recent change in paradigm

Arterial stiffness and systolic hypertension is a normal aging process. You don't need to treat it

Arterial stiffness in an independent risk factor For adverse cardiovascular prognosis

Arterial Stiffness

SBP as a more informative CV risk factor in patients older than 50 years

PP is an independent marker of CV risk

In subjects > 50 years of age, arterial stiffness becomes the main determinant of increased SBP and PP

Pulse Pressure Predicts Risk Best In Older Hypertensives A Meta-Analysis

Blacher et al. Arch Intern Med. 2000;160

Differential Impact of Blood Pressure-Lowering Drugs on Central Arterial Pressure Influences Clinical Outcomes -Principal Results of the Conduit Artery Function Evaluation (CAFÉ) Study in ASCOT

Objects of CAFÉ study

Primary Objective

- Whether different blood pressure-lowering regimens in ASCOT(atenolol+ thiazide versus amlodipine+ perindopril) make differential effects on central aortic pressures and hemodynamics

Secondary Objective

- Whether central aortic pressures are an important determinant of clinical outcomes in ASCOT

CAFÉ Study Design

ASCOT (Years)

>70% of ASCOT patients at 5 study centers recruited

- 80% of patients had > 1 tonometry measurement
- Average 3.4 tonometry measurements/patients
- Average follow up after first tonometry measurement was 3 years

Pulse Wave Analysis: Augmentation index

Radial a.

Pressure transfer function (Degree of amplification)

Aorta

Radial artery pulse wave analysis

Radial artery pulse wave Radial artery applanation tonometry Millar Tonometer Pulse wave analysis Derived Central aortic pressure SphygmoCor

Mean Proportion of Time(%) on BP Lowering Medication by Treatment Group*

	Year 1	All Study
Randomized to Amlodipine		
Amlodipine	90.0	80.7
Perindopril	56.0	66.7
Amlodipine + Perindopril	47.8	55.5
Randomized to Atenolol		
Atenolol	88.1	73.5
Bendroflumethiazide	69.8	74.2
Atenolol + Bendroflumethiazide	60.2	59.6
*from time of randomization into ASCOT		

 Monotherapy : 	Atenolol; 3.5%	Amlodipine; 7	7%
Average number of BP	lowering drugs/patie	nts: 2	2.2

Hemodynamic Data

Parameter	Atenolol	Amlodipine	Difference (Atenolol- Amlodipine)	Statistics t-test(P)
Brachial SBP	133	133.2	0.7	0.2
(mm Hg)	(133, 134.7)	(132.5, 133.8)	(-0.4, 1.7)	
Brachial DBP	78.6	76.9	1.6	<.0001
(mm Hg)	(78.1, 79.1)	(76.4, 77.4)	(0.9, 2.4)	
Brachial PP	55.3	56.2	-0.9	.06
(mm Hg)	(54.6, 56)	(55.6, 56.9)	(-1.9, 0)	
Heart rate	58.6	69.3	-10.7 <.0001	
(BPM)	(58, 59.2)	(68.6, 69.9)	(-11.5, -9.8)	

Hemodynamic Data - Example

- Atenolol Group
 - Broader peripheral waveform
 - More prominent late systolic peak in central aortic waveform

Primary outcome Brachial and Central Aortic Systolic Blood Pressure (+ 95% CI)

Difference Between Brachial and Central Aortic Systolic BP by Treatment Arm

Brachial and Central Aortic Pulse Pressure by Treatment Arm

Pulse Wave Velocity

Pulse wave travels faster through the stiffer artery.

Pulse Wave Analysis & Al

Pulse wave travels faster through the stiffer artery.

Augmentation Index (%) by Treatment Arm

Results summary

 Atenolol-based therapy associated with higher Central aortic systolic pressure and higher central aortic pulse pressure, despite similar brachial pressures, when compared with amlodipine-based therapy

 AI (central aortic pressure wave attributable to wave reflection) increased by atenolol-based therapy compared with amolodipine-based thearpy

Secondary Endpoint regarding central aortic hemodynamic parameters and clinical outcomes

Impact of Blood Pressure and Central Aortic Hemodynamics on Clinical Outcomes in the CAFÉ Study (Hazard/10 mm Hg)

Updated Cox proportional hazard model for the composite endpoint, <u>unadjusted</u>

Factor	X ²	Р	HR	CI
Peripheral PP	21.0	<.0001	1.21	1.12-1.30
Central PP	17.8	<.0001	1.20	1.11-1.30
Augmentation	7.10	.008	1.22	1.06-1.4
P ₁ height	19.0	<.0001	1.37	1.20-1.54

Discussion

- Higher Central aortic systolic and pulse pressure may results from Increased pressure wave reflection
- Mechanisms of Differences in aortic systolic pressure wave reflections
 - Arterial pulse wave velocity (x)
 - Pressure wave reflection site
 - Relative vasoconstriction
 - Small artery remodeling
 - Timing of systolic ejection resulting from differences in heart rate

CAFÉ study Conclusion

 Despite similar brachial systolic blood pressure, amlodipine + perindopril-based treatment more effective than atenolol+thiazide-based treatment at lowering central aortic systolic blood pressure and central aortic pulse pressure

Central aortic pressure may be an important independent determinant of clinical outcomes

Results of the CAFÉ study suggest that the "central aortic blood pressure hypothesis" is a plausible mechanism to explain the better clinical outcomes for hypertensive patients treated with amlodipine+perindopril-based therapy in ASCOT

Beyond brachial blood pressure lowering effect!!